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A general Galerkin formulation is given for the periodic form of Maxwell’s equations on a 
bounded inhomogeneous medium. The formulation conserves energy exactly and its disper- 
sion relation is studied. Solutions for test problems representative of hyperthermia 
applications show good agreement with analytic solutions. A representative clinical example is 
shown. ‘CJ 1985 Academic Press, Inc 

INTRODUCTION 

It has been known for at least a century that hyperthermia-elevated tissue tem- 
perature-has beneficial effects in cancer therapy. Until recently there has been little 
careful research in this area. However, recent positive results from heating cancer 
cells to 42°C or higher, alone or in combination with radiation or chemotherapy, 
have renewed interest in this form of treatment. (For a brief history, see Hahn [9] 
or Storm [31].) 

Several approaches are possible for elevating the tissue temperature. Local 
heating may be produced invasively, e.g., by small microwave antennas inserted 
into the tumor through hypodermic needles; or noninvasively by ultrasound 
transducers for superficial tumors. Regional heating has also been pursued non- 
invasively by induction and microwave devices. An overview of research and 
clinical results can be found in the proceedings of recent international symposia 
[34,5] as well as the monographs by Hahn [9] and Storm [31]. Several devices 
are now undergoing clinical evaluation. 

Detailed thermal measurements are presently impractical, particularly for deep- 
seated tumors, and the problem of temperature prediction/inference is confronted in 
several areas, including the scientific documentation of experimental and clinical 
results; the design of equipment; and the selection of equipment, power levels, treat- 
ment times, etc., for a particular patient. This latter category we refer to as “treat- 
ment planning.” It is our goal to create temperature prediction algorithms which 
can ultimately be used in a clinical setting with realistic patient 
geometry-preferably derived from CT scans or other clinical information. 

The problem of temperature prediction is itself twofold: first, predict the rate of 
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heat deposition in the various tissues; and second, predict the resultant tem- 
peratures. The latter problem is common to all of the heating devices and has been 
successfully formulated as a heat diffusion problem, with a pseudo-first-order decay 
term to represent the crucial role of blood circulation in temperature regulation. 
This “bioheat equation” has received considerable attention [l, 133, and its trans- 
ient solution on complex geometries is tractable numerically, particularly with 
modern finite element techniques. The heat source calculations, however, tend to be 
device-specific. Since electromagnetic devices are quite common, we have pursued 
the solution of Maxwell’s equations on finite elements, with the aim of using the 
same element grid for both heat source and temperature calculations. 

Several significant finite element solutions for electromagnetic problems have 
been reported, as evidenced by the recent compilations [3, 301. The bulk of the 
applications involve reduction of the governing equations to simpler Laplace, 
Poisson, or diffusion equations with subsequent solution on finite elements. In the 
latter category, major contributions have been made relative to magnetic field and 
eddy current analysis in electric machines [4, 27, 21, 223. At the low frequency of 
commercial interest, displacement current is negligible and the diffusion equation 
governs; but significant complexity is introduced by the nonlinear B/H relationship 
encountered under typical operating conditions. This latter complication is unim- 
portant in the hyperthermia-cancer problem; however, our interest is in the fre- 
quency range 10-100 MHz and displacement current may not be neglected. 
Further, the electrical properties do vary significantly with tissue type. Hence, we 
must solve the full Maxwell equations on a bounded, inhomogeneous domain. 

In this paper, we present a general Galerkin formulation for the electric field. The 
global energy conservation property of the numerical solution is established, and 
the numerical dispersion relation is studied for the simplified Helmholtz equation to 
produce some guidelines for mesh design. Planar solutions are then obtained 
numerically and compared with analytic solutions for cases inspired by two 
regional hyperthermia devices currently in use. Finally, a realistic clinical 
application is shown. 

GOVERNING EQUATIONS AND DISCRETIZATION 

Our starting point is Maxwell’s equations, which have been reviewed in the 
present context by Strohbehn and Roemer [3.5]. Assuming a periodic solution in 
time of the form exp( -iot), we have 

VxE=iwpH (la) 

VxH= -im,E (lb) 

where 
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E is the time-invariant complex amplitude of the electric field 
H is the time-invariant complex amplitude of the magnetic field 
p is the magnetic permeability 
E, = E + is/o is the complex permittivity 
(T is the electric conductivity 
E is the permittivity 

w is the radian frequency 
i = JT. 

As noted by Strohbehn and Roemer [35], p is effectively constant in tissue; while CT 
and E vary with both frequency and tissue type. Some typical values of these 
parameters are listed in Table I. 

Since the power deposited per unit volume of tissue is given by CJ /E/‘/2, our 
objective is to compute the electric field directly. Therefore we isolate E by a stan- 
dard maneuver: take the curl of Eq. (la), and substitute (lb). The result, taking 
advantage of the fact that .D is a constant, is 

Vx(VxE)-k’E=O 

TABLE I 

Representative Values of Dielectric Constant and 
Electric Conductivity at Various Frequencies” 

12) 

13 MHz 40 MHz 70 MHz 100 MHz 

Muscle 
EiEo 122. 97.3 85. 72. 
IJ 0.60 0.693 0.802 0.889 

Lung 
&,:&O 3.2 30. 40. 40. 
0 0.007 0.15 0.35 0.35 

Fat 
E,Y&o 28. 14.6 10.5 10.5 
fJ 0.20 0.20 0.2 1 0.22 

Bone 
W% 28. 7.86 IO. 10. 
CT 0.20 0.02 0.02 0.02 

Heart 
E&l 140. 70. 89. 89. 
0 0.6 0.76 0.93 0.93 

Deionized water 
4% 70. 70. 78. 78. 
0 0. 0. 0. 0. 

’ a0 = 8.854 x lo-” F/m; p = p,, = 4n x lo-’ H/m; 0 expressed in mho/m. Values were assembled with 
some discretion from Hill et al. [ll]; Young et al. [37]; Iskander et al. [12]; Guy et al. [S]; Schwan 
and Foster [28]; Lin et al. [15]; Hahn Ed al. [lo]; Burdette [Z]. 
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where k is the complex wavenumber: 

(3) 

Our approximate solution is based on the weak form of (2) 

([lvx(VxE)I~i>-(k’E~i)=O, (4) 

where ( ) indicates integration over the volume, and $i is any scalar function. The 
first term in (4) may be integrated by parts, 

= ~x(~~~VXE)~S-(V~~,X(VXE)) 
P 

(5) 

and the weak form which we utilize is thus 

((V x E) x Vd;) - (k2Edi) = imp $ H x n#i ds. (6) 

Note that we have purposefully reintroduced H in the boundary integral. This term 
is the vehicle for applying boundary conditions where E is not specified; and for 
computing n x H on boundaries where E is specified. 

To complete the numerical discretization we expand the unknown E in terms of 
the real-valued weighting functions #i 

E = 2 Ejd., (7) 
j= I 

and require the satisfaction of (6) for i = 1 through N. This Galerkin approximation 
is then implemented on conventional finite elements, where di and E are continuous 
with piecewise continuous first derivatives. When E is in the plane of analysis an 
essential discontinuity is required at internal boundaries where E, changes abruptly. 
Our finite element discretization is formally severed along these boundaries, and the 
appropriate conditions enforced. Since n x H must be continuous, the boundary 
integrals in (6) mutually cancel along such boundaries. These properties allow 
assembly of Eqs. (6) in the usual element-by-element manner. 

For a discretization of N nodes of which M lie on the boundary, Eqs. (6) con- 
stitute N equations in N + M unknowns: N values of E, and M values of Fi= 
4 H x ndi ds. To these equations we add a boundary condition (BC) on either Ei or 
Fi at each boundary node, which closes the system algebraically. Operationally, 
when Fi is known it simply constitutes the right side of Eq. (6,). When Ei is known, 
Eq. (6,) is removed from the matrix in favor of the BC, and saved. Following the 
simultaneous determination of the Ej, the unknown F, are computed directly via 
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the saved equations. In this way we enforce all of the Galerkin equations (6), a 
feature which will be essential in demonstrating the energy balance below.’ 

The time-averaged energy flux P,, is given analytically as 

P,, = Re(P) = Re (8) 

where P = fE x H* is the complex Poynting vector. Equation (8) may be integrated 
over the boundary by a simple dot product of the computed E, and Fi: 

.\ 

c F,**Ej= (H*xn)* 
j= I P 

= -(ExH*).nds. 4 (9) 

Thus the total power consumption is given by 

- 
+ 
‘P,,..n&= -Re [t F:.EjZ]. 

Of course, the summation need be carried over boundary nodes only, since 
otherwise F.i= 0 by definition. Below we show that this simple calculation is 
algebraically identical to the volume integral of the resistive power loss obtained 
from the numerical E field. 

Finally we note that for the special case when E = E,(x, J) z, formulation (6) 
reduces to a simple scalar Galerkin-Helmholtz equation, 

(VE;Vbi)- (k’E,di) =~VE;n~,ds (11) 

with 

VE;n=iop(Hxn).z 

and V, H, and n restricted to the (x, y) plane. 

(12) 

’ A more conventional finite element practice would be to ignore Eq. (6,) when E, is known, which 
also eliminates the variable F, from the system. While the computed E, values would be unchanged, 
essential information for computing the exact energy flux is lost. Lynch [I81 shows that for a simple I-D 
scalar wave equation, this conventional approach results in an error which is first order in the mesh 
spacing. 
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ENERGY BALANCE 

The general statement of energy conservation for Eqs. ( la), (1 b) is (Jordan and 
Balmain, [ 143 ) 

where Z = Re[H exp( -ior)], B = Re[E exp( -iwt)], and 9 = d x s+F is the 
Poynting vector. In terms of the complex amplitudes H and E, two conditions must 
be satisfied: 

(y)+Re{(y).nds=O (14) 

and 

-~H.H*+~E.E* +Im ) f(y).nds=O. (15a) 

Equation (14) represents the familiar time-averaged energy balance between ohmic 
heating in the volume and energy flux across the surface; (15a) represents the 
energy balance for the reactive power, which accounts for periodic changes in 
stored energy. Since we do not compute H on the interior, we utilize (la) in the 
volume integral of (15) to obtain the equivalent form 

)+fm$(~)~nd~=O. (15b) 

While our numerical solution only approximately satisfies Maxwell’s equations at 
a point, nevertheless it does exactly satisfy the global relations (14) and (15b). To 
see this, take the dot product of Eq. (6) with E,+ and sum from i= 1 to N. The first 
term on the left yields, after rearrangement of the triple product, 

(. c (VqS; x ET). (V x E) 
> 

and since from Eq. (7) we have V x E* = xi Vd; x ET, this term is identically 
((V x E) . (V x E*)). The second term on the left yields (k*E . E* ) directly. The 
right side of (6) yields, after rearranging the triple product, 

iop (E*xH).nds. 
P 
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Assembling these results and dividing by 2iop thus yields 

: 1 (VXE).(VXE*)+~<~~E.E* 

\ itop 2 
--CT?) =$- (~)ds. (16) 

2 

Noting that (E* x H) is the conjugate of (E x H*), the real part of (16) is 

(17a) 

which is identical to its analytic counterpart (14). Thus the time-averaged portion 
of the energy balance is satisfied exactly by the numerical solution. As described 
above, the numerical power input in (17a) may be efficiently computed according 
to (lo), thus avoiding the necessity of computing the volume integral of the ohmic 
heating. 

The imaginary part of ( 16) is 

- &(VxE).(VxE*)+yE.E *)+Im$(~)~nk=O (17b) 

which exactly reproduces the reactive power balance (15b). We conclude that the 
numerical solution conserves energy exactly. 

DISPERSION ANALYSIS 

In an unbounded, homogeneous medium Eq. (2) admits plane wave solutions of 
the form E, exp(ks), where s = r. n, n is the unit vector in the direction of 
propagation, and k is related to the forcing frequency o by the dispersion relation 
(3). In this section we develop the dispersion relation which governs the numerical 
solution on the uniform element configurations of Figs. 1 and 5, and explore its 
fidelity to its analytic counterpart. We treat only the case where E is normal to the 
(x, J) plane, governed by Eq. (11). Mullen and Belytschko [23] have studied the 
lossless (a=O) form and report numerical wave speed (d/k, where Q is the 
numerical frequency) as a function of real wavenumber k, for a variety of 2-D grids. 
In our case we wish to study the forced response at given real frequency w. Thus we 
invert the question: given o, find the numerical wavenumber fi and compare it with 
the analytic value k. Platzman [26] has examined Eq. ( 11) in this way for the 
lossless case, and discovered additional complex values of fi corresponding to 
parasitic solutions. In a dissipative system, both L and k will be complex even for 
the nonparasitic modes, and we adopt two measures of fidelity: 

(a) the numerical wavelength E = 2rc/Re(k), divided by its analytic counter- 
part-this ratio is identical to the wave speed ratio 

2 Re(k) -=-. 
L Re(@’ 

(18) 
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(b) the numerical damping rate, -Im(fi). In this case we report the 
amplitude decrease over one analytic wavelength, divided by its analytic counter- 
part 

s=exp[-Im(L-k)L]. (19) 

This measure is analogous to the “propagation factor” commonly employed in the 
dispersion analysis of traveling waves with real wavenumber (e.g., Gray and Lynch 
C71). 

It is readily verified that for the triangulation of Fig. 1, Eq. (11) weighted by 4, is 

f$ 8E,,-;iE, -k*A 
2 1 [ E=,+;iE, =O. 

2 1 
Assuming a solution of the form Ezj = E, exp(ikj), i.e., a wave parallel to the x 
axis, Eq. (20) yields the requirement 

,+;=2-2K213 
A 1 + K2/6 (21) 

where K = ka, a is the mesh spacing in the x direction (Fig. 1 ), and 1 is the ratio of 
the numerical solution at adjacent nodes, 

2 G exp( i&z). (22) 

FIG. 1. Uniform grid of equilateral triangles employed in the dispersion analysis. 
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Equation (21) is identical to that which governs a one-dimensional discretization 
on linear elements. The two roots will be such that 1, = l/L,, i.e., t$, = -I?, , 
corresponding to progressive and regressive waves along the x axis. The solution 
for 1 is 

(23) 

It is readily verified that for the lossless case (K real) 111 = 1 for all frequencies 
below the cutoff point K < x. Thus the numerical solution in this case provides no 
artificial damping: 6 = 1. 

In Fig. 2 we show both L/L and 6 as a function of dimensionless frequency 
W = oa fi, with dimensionless dissipation S = au & as a parameter. As can be 
seen in Fig. 2a, the wavelength ratio is only slightly influenced by dissipation, and is 
very near to unity for W/n GO.1. On the other hand, the damping rate 6 
deteriorates with increasing S or W, and yields good accuracy (roughly 1%) in the 
range WSGO.02. It is interesting to note that these approximate guidelines for 
mesh design can also be obtained by requiring (a) 20 or more elements per undam- 
ped analytic wavelength ( W/T < 0.1); and (b) 10 or more elements per factor of e 
decay in the heavily damped analytic case. 

For a wave in the y direction, E, = E, exp(i&), Eq. (20) produces the 
fourth-order polynomial 

where y = exp(i&/2) is the ratio of numerical amplitudes at adjacent nodes in the y 

1.3 _ 

1.2 - 

1.1 _ 

(5 
l- 

.9 I 
-2 -1.5 -1 -.5 0 

a LOG (w/n) 

Lo 1.6 

1.4 

1.2 

1 
-2 -1.5 -1 -.5 0 

b LOG (W/n) 

FIG. 2. Wavelength ratio (a) and damping ratio (b) for EZ wave in x direction, for the grid of Fig. 1. 

W=wa&+aaJ& 
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direction and X = kh/2 is analogous to K in the x direction analysis (X = K/fi). 
Equation (24) has four roots with the properties yz = l/y,; y4 = l/y,, 

( ) y+; =-l&-R(X) 

where 

Wb) 

In the limit as X vanishes, R = 3 and it is clear that the + option in (25a) yields 
progressive and regressive waves which correspond to the analytic solution 

For the lossless case, R is real for X < ,/%, and (71 = 1 in this range; i.e., the 
numerical solution introduces no artificial damping, b = 1. Values of E/L and 6 are 
plotted in Fig. 3 for these physically meaningful waves. The curves are essentially 
indistinguishable from the X direction curves (Fig. 2) except at the low resolution 
end of the scale, Wzrc, and thus the accuracy guidelines for W and WS are 
unchanged. 

The “negative” option in (25a) yields two parasitic waves which have no counter- 
part in the analytic solution 

Yp= -+JqEJ (27) 

Again in the lossless case, R is real and exceeds unity for X < 2, i.e., the entire 

1.3 

1.2 

e 
(-’ 1.1 

J-l-L-- 
-2 -1.5 -1 -.5 0 

a LOG (W/n) 

2 

1.8 

1.6 Lo 

1.4 

-2 -1.5 -1 -.5 0 
b LOG (W/n1 

FIG. 3. Wavelength ratio (a) and damping ratio (b) for E, wave in y direction, for the grid of Fig. 1. 

581 58,?-7 
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range of reasonable resolution. In this range, both values of yp will be real and 
negative, and thus these modes will oscillate from node to node with wavelength h. 
Due to the arrangement of the grid of Fig. 1, these will also appear as an undamped 
wave of length 2 = 2a in the x direction when the dominant physical wave is in the 
J direction. Because the associated wavenumbers R are complex, these parasitic 
waves are frequently overlooked in dispersion analyses (e.g., [23]) which postulate 
a real valued k and find the corresponding 6,. Platzman [26] has discussed similar 
numerical artifacts in a related study of the lossless case. 

The attenuation rate per mesh spacing (yp+ I is insensitive to K and S and very 
strong. Over the range of physical interest, S< 1.6 and K/n 60.1, we find that 
Iyp+ 1 = 0.269 f 0.002, and thus IJ~~+ 1 3 < 0.02. Further, for this range of K and S, the 
size of the imaginary part of ljp+ does not exceed 5 % of its real part; that is, all the 
parasites in this range will have very short wavelengths. 

For finite problems, the parasitic modes will originate in the fitting of the boun- 
dary conditions. Consider, for example, the termination of the uniform grid as in 
Fig. 4. Specification of E, along the top and bottom will invoke all four modes, 
since E, is constrained at four values of y. The rapid attenuation/growth of the 
parasites, combined with the requirement of finite E, at the boundaries, implies that 
the parasites will effectively penetrate only three or four mesh spacings into the 
interior of the grid. 

Finally, consider a homogeneous grid of bilinear elements as in Fig. 5. 
Equation ( 1 1 ), weighted by 4, , yields in this case 

K2[16E,,+~E;i+4~E;,]+;[2~E,;-16E;,]=0. - 

36 (28) 
2 6 2 

FIG. 4. Hypothetical termination of homogeneous triangulation. 
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FIG. 5. Uniform bilinear grid for the dispersion analysis. 

For waves in either the x or y direction, the dispersion relation is identical to (23), 
with no parasitic modes. All of the previous discussion of this equation and Fig. 2 
are thus pertinent. For waves in any of the diagonal directions on the bilinear grid, 
(28) yields the requirement 

(8K2+24)+ 16(K2-6)=0 

where y E exp(i&/2). Again there are two physically meaningful solutions, 

1 24-4K2 
‘+;= 12+K2 

and two parasites, 

y+;= -4. 

(29) 

(30) 

(31) 

In the lossless case, the physical modes have IyI = 1 for all frequencies W< n. In 
Fig. 6 we plot E/L and 6 for the physical modes. Comparison with Figs. 2 and 3 
reveals enhanced accuracy, which we attribute to the smaller effective mesh spacing 
~/fi and the quadratic local interpolation in this direction of the grid. The 
parasitic modes are independent of K and have the values y = -2 + 3. Their 
behavior is virtually the same as that of the triangular grid parasites. We conclude 
that the rules of thumb articulated above for the triangular grid are applicable in 
this idealized case as well: W/n < 0.1 and WS < 0.02. 

Application of these guidelines to the properties listed in Table I yields maximum 
mesh spacings which appear in Table II. In every case except water, the constraint 
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1.3 _ 

2 

1.2 _ 1.8 

1.1 - 
1.6 

0 
i 
(-I 1.4 

1 
1.2 

.9 I I I I 1 
-2 -1.5 -1 -.5 0 -2 -1.5 -1 -.5 0 

a LOG (W/II) b LOG IW/nl 

FIG. 6. Wavelength ratio (a) and damping ratio (b) for I?; wave in the 45” direction of the bilinear 

grid. W = wa ,,I;; S = oa ,/z. 

on WS dominates. A characteristic length for the torso is 30 cm, and resolution of 
internal tissue structure requires mesh spacings of roughly 1 cm or less. Thus as a 
first approximation we conclude that reasonable geometrical resolution will provide 
reasonable resolution of the electric field as well. 

TEST CASES 

To test our method we have solved some simple 2-D cases where analytic 
solutions are available. The tests are motivated by two clinically available devices 
intended to produce noninvasive heating of deep-seated tumors, and the boundary 
conditions appropriate to each in the limiting planar case. 

The first group of tests is inspired by the Annular Phased Array System (APAS) 
developed by the BSD Corporation (Salt Lake City, Utah). The physical charac- 

TABLE 11 

Maximum Grid Spacing (m) for WS<O.O2, Based on the Tissue Properties of Table I 

13 MHz 40 MHz 70 MHz 100 MHz 

Muscle 0.018 0.0096 0.0067 0.0053 
Lung 0.167 0.021 0.01 0.0085 
Fat 0.031 0.018 0.013 0.011 
Bone 0.03 1 0.056 0.043 0.036 
Heart 0.018 0.0091 0.0062 0.0052 
Deionized water0 0.138 0.045 0.024 0.017 

0 For water the constraint is W/n ~0.1. 
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teristics and clinical experience with this device are summarized by Turner [36] 
and Gibbs et al. [6]. The patient torso, surrounded by a water bolus, is subjected 
to an incident electric field, polarized in the z direction (z being normal to the plane 
of analysis) by means of a series of apertures placed around the circumference. In 
this case, the simplified formulation (11) applies, and boundary conditions are by 
design of the Dirichlet type: E, given at the device boundaries which enclose the 
patient. At internal boundaries where tissue properties change abruptly, EZ and VE, 
are continuous, and thus (11) may be assembled without special care on simple Co 
elements. The matrix formulation of (11) is symmetric 

CAI{&J =iw{FI (32) 

with A,= (Vbi* Vdj- k2&i4j). We use a conventional banded solver with trivial 
modifications to handle complex numbers, which are represented as two 
floating-point 64-bit words each. Inner products are evaluated exactly on triangular 
elements, and by 2 x 2 Gauss quadrature on bilinear elements. 

For an axisymmetric problem with uniform electric properties, the exact solution 
is 

E,(r) Jo@) -=- 
-Co Jo%,) 

(33) 

where r is the radial coordinate, Efi is the imposed field at ro, and Jo is the Bessel 
function of the first kind. In Fig. 7 we compare this to our numerical solution 
obtained with the tissue properties of Table I at 70 MHz. The agreement is within 
3.9% of Es. Improvements in either the radial resolution or the quadrature had 

Oi 
0 .05 .l .15 .2 .25 

b RADIUS IMI 

FIG. 7. (a) Finite element mesh for the cylinder test cases. Ar= 1 cm. (b) Electric field magnitude 
versus radius for uniform cylinder; Annular Phased Array System. Tissue properties are from Table I at 
70 MHz. 
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minor impact on this error; doubling the circumferential resolution reduced the 
worst error to 1.1 o/b. In all of these runs, circumferential variations were present in 
regular patterns, with negligible amplitude * 10P5. 

On the same mesh we have also solved the idealized case where distinct tissue 
types are arranged in concentric layers. The analytic solution in layer i is 

E,(r) = A,J,(kr) + BjY,(h) (34) 

where Y, is the Bessel function of the second kind. In addition to satisfying the 
usual boundary conditions, the Ai, Bi must also satisfy the continuity of E, and 
dE,/dr at the interfaces. Results are shown in Fig. 8 at 70 MHz. The accuracy is 
comparable to that of Fig. 7. 

The second device which we have studied is the Magnetrode, developed by Henry 
Medical Electronics Inc. (Los Angeles, Calif.). This is essentially a magnetic induc- 
tion device in which the patient is surrounded by a current-carrying coil. Technical 
and clinical information is provided by Storm et al. [32] and Oleson [24]. 

For the limiting plane case we have H = H(x, y) z and E confined to the (s, -Y) 

plane. At the device boundary, H= J,, the amplitude of the current per unit length 
in the coil. We solve for E directly with the general formulation (6). The external 
boundary conditions are enforced via the surface integral: 

Fi = $ H x n4i ds = J, $ z x ndi ds = J, $ di ds. (35) 

Since we have two complex unknowns E,j and E,+ at each node, this formulation 
requires more computational power than that tested above. An additional com- 
plication is the requirement that E be discontinuous along internal tissue boun- 
daries. 

FIG. 8. Electric field magnitude for 2-material cylinder; Annular Phased Array System. The interface 
is at r= 12cm. 



MAXWELL’S EQUATIONS 261 

We treat these internal boundaries by introducing a cut in the grid across which 
the interpolation of E is discontinuous, as in Fig. 9. Essentially we create separate 
grids for each tissue type, with coincident but distinct nodes along the interfaces. 
Denoting such a pair of nodes as 1 and 2, we assemble Galerkin equations 1 and 2 
separately, in effect never carrying the inner products across an interface. Boundary 
conditions on nodes 1 and 2 are 

~.(E,,E,-E,~E,)=O (36a) 

nx(E,-E,)=O Mb) 

nx(H,-H,)=O. (36~) 

n~(~IHI-~JJ2)=0. Wd) 

In view of (36c), the internal boundary integrals FL and F2 may be eliminated from 
the algebraic system by summing Galerkin equations 1 and 2. Equations (36a), 
(36b) then close the set, provided a suitable definition of n is available. In the tests 
reported here we adopt the “nodal normal,” essentially a local average of the 
piecewise continuous n 

lli= nfjids 
0 i+ 

fjidS (37) 

which has been used successfully in other wave propagation studies [ 19, 20, 161 
and also in parabolic problems [ 173. Note, however, that this definition of n, does 
not guarantee the vanishing of ET. F, + E: * F,, and we anticipate some local 
numerical power loss or gain across tissue interfaces where the curvature is not well 
resolved by the grid. 

The matrix formulation of (6) is 

FIG. 9. Cut in element grid along a tissue interface. 
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where A, E, and F comprise the two-dimensional complex submatrices 

A,= 

Fi = J, 

As in the simpler case above we use a complex banded matrix solver with the same 
level of precision and inner product quadrature. 

For the axisymmetric test cases the exact solution for H, is the same as for E, in 
Eq. (34), with the requirement that H, and ( l/sc)(8Hz/&) be continuous at inter- 
faces. The electric field is then given by 

(40) 

where Q is the circumferential unit vector. Solutions obtained on the grid of Fig. 7a, 
truncated at r = 15 cm, are displayed in Figs. 10-12. In Fig. 10 we show IEl versus r 
for muscle at several frequencies. As expected, the accuracy degrades with increas- 
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FIG. 10. Electric field magnitude for uniform cylinder of muscle tissue at various frequencies; 
Magnetrode. 
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FIG. 11. Vector plots of E for muscle at 70 MHz; Magnetrode. (a) Re(E); (b) -Im(E). 

ing frequency, from 0.1% of E,,, at 13 MHz to 3% at 70 (not shown) and 
100 MHz. As in previous tests, (E( is essentially uniform in the circumferential 
direction. Vector plots of Re(E) and Im(E) appear in Fig. 11 and display the proper 
circulation of E about the z axis. In Fig. 12 we show results for 3 different com- 
binations of tissue. As expected from Table II, the case with the largest mass of 
muscle yields the largest error, 3.6%, while the other two cases are within 1% of 
the exact solution. 

Since this formulation provides continuity of E and exact satisfaction of the inter- 
facial jump conditions, we regard it as preferable for scientific work where precision 
is the only goal. In practice, however, we expect ultimately to implement these 
algorithms on small computers for routine treatment planning, and numerical com- 

FIG. 12. Electric field magnitude for 2-material (muscle-air, muscle-fat, and bone-muscle) cylinders 
at 70 MHz; Magnetrode. The interface is at r = 7 cm. 
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plexity may become a limiting factor. We have therefore studied the numerically 
simpler but less elegant approach in which H is obtained on finite elements, and 
subsequently differentiated to obtain E. Since H in this problem is normal to the 
plane, its computation is essentially the same as in the simple formulation ( 11). We 
expect therefore to gain by a factor of 4 in matrix storage requirements, and by a 
factor of 8 in the operation count for direct solution. An additional factor of 2 
economy in storage is possible due to the symmetry of formulation (11). These 
savings will only be marginally eroded by the additional operations required to dif- 
ferentiate H; the drawback is the resulting loss of accuracy in E, which will be dis- 
continuous across all element boundaries. 

The general formulation for H is readily obtained by retracing the steps from 
Eqs. ( 1) through (6). The result, analogous to (6), is 

(41) 

Note that n x E is continuous across tissue boundaries. When as in the induction 
heating case H = H,(x, I’) z, (41) simplifies to the analog of (11 ), 

$VHr-Vqbi 
> 

- (H,(i)=$-$VH,.nq5ids. (42) 

With H, given on the boundary in terms of the coil current, we solve (42) by minor 
modification of the algorithm tested above for the Annular Phased Array problems. 

Results analogous to Fig. 12 appear in Fig. 13a, where we plot IE( at element 
centers. In Fig. 13b we show the same calculations but with the circumferential 

0 .05 .I .15 0 .05 .I .15 

a RhoIllS n b RAOIUS It-l) 

- 
w - 

FIG. 13. Same as Fig. 12. Solution obtained from reduced formulation (42) and plotted at element 
centers. 
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resolution doubled. The accuracy at these points is quite satisfying in both cases: 
the worst error is roughly 4.6 % in Fig. 13a, and 1.1% in Fig. 13b. Bear in mind, 
however, that this numerical solution is essentially piecewise constant in r. At 
present we are examining the impact of this on the thermal predictions, which are 
the ultimate goal of our project. 

EXAMPLE OF CLINICAL APPLICATION 

To illustrate the ultimate use of our algorithms, we present a realistic problem 
based on CT scans of typical cancer patients being treated at our institution. 
Figure 14a shows a thoracic cross section containing a tumor mass embedded 
deeply in the right lung. The finite element discretization appears in Fig. 14b for the 
thorax itself, and in Figs. 14c,d for the space between the APAS and solenoid 
devices and the patient. On these grids we calculated the appropriate field by 

H = HEART = BONE 

T=TUMOR M = MUSCLE 

L = LUNG F=FAT 

A A 

FIG. 14. (a) Representative thoracic cross section. (b) Finite element mesh for thorax. 
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Eq. (11) (APAS) or (42) (Magnetrode); JE( is reported in Figs. 15a,b along the line 
A.4’ of Fig. 14b. As expected, /El generally decreases toward the patient center for 
the Magnetrode. The APAS results are relatively flat across the patient. Note that 
in the APAS case, since E is calculated at each node the plotted points were 
obtained via nodal interpolation. In the solenoid case E was only computed at the 
centroid of each element and the points plotted are the field value at the center of 
the element nearest the AA’ axis. 

FIG. 14. (c) Finite element mesh for APAS simulation. (d) Finite element mesh for Magnetrode 
simulation. 
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TRANSECT AA' tll b TRANSECT AA' (II) 

FIG. 15. IEj along the line AA’ of Fig. 14b; (a) APAS, (b) Magnetrode. 

CONCLUSION 

Based on these tests, we are confident that our algorithms effectively solve 
Maxwell’s equations under typical hyperthermia conditions. Presently we are using 
these algorithms to develop the distributed heat source for finite element thermal 
calculations [25]. Two issues remain open: 

(a) The propriety of 2-D calculations. Obviously the general problem which we 
face is three-dimensional, and our formulations are posed in 3-D. We view the sim- 
pler plane calculation, as typified by the clinical example above, as a best case 
analysis-treatments which fail to produce satisfactory heating via this analysis are 
unlikely to perform better when analyzed in 3-D. At a minimum, then, the plane 
analysis may be used as a screening mechanism. The extent to which we can 
extrapolate good 3-D performance from good 2-D performance, and thus avoid 
computing the third dimension, remains an open question and one which we expect 
to report on in the future. 

(b) The level of spatial resolution required for practical purposes. Since the 
ultimate thermal calculations involve significant diffusion, there is a level of 
resolution for E which need not be exceeded, and we hope to establish this in the 
future. For example, we expect but have not yet demonstrated that computed tem- 
peratures will be insensitive to the choice of formulation-Eq. (6) versus (42)-for 
solenoid-type devices. 

Both of these issues are especially important as they determine ultimately the fre- 
quency of clinical use. The requirement of moderately large-scale, complex linear 
algebra on small machines is one potentially limiting factor; another is the level of 
sophistication required on input and output. 
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While we have assumed the magnetic permeability p to be constant, the general 
Galerkin approach taken here is not limited to this case. With p =p(x). the for- 
mulation (6) may be restated as 

and its dual for the magnetic field is 

(43) 

Both have global conservation properties, and the dispersion analysis given herein 
for the homogeneous case applies. We are unaware of any precedent for this general 
formulation and look forward to applications in other areas. 
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